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I-kThe subjective transfer function (STF)
approach is a general subjective
measurement method developed to evaluate
complex systems where groups of people
differing in expertise directly and
indirectly affect system outcomes. The
approach is based on the pinciples of
hypothesis formulation and testing. It
incorporates features of the algebraic
modeling approach to measurement where
meaningful subjective scale values derive
from tested theories; it provides
additional features necessary for
coalescing judgments obtained from A.
different groups of system experts into an
overall perceptual outcome. This report
introduces and is a primer of the STF
method. It outlines the steps involved in
the approach, describes how those steps can
be accomplished, and discusses measurement
principles and techniques to aid the
reader's understanding of the basis for the
approach.
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PREFACE

The Subjective Transfer Function (STF) approach to analyzing systems was developed at
Rand during research on evaluating the contribution of command and control to the overall
combat effectiveness of tactical air forces. This report is intended to serve as a primer of the
STF method for personnel faced with the problem of analyzing systems wherein hard (equip-
ment), soft (procedures), and human elements all have main effects on outcomes. The work
was sponsored by Project AIR FORCE under the study effort "Tactical Air Command and
Control."

iii.:



SUMMARY

IP

The subjective transfer function (STF) approach is a general subjective mea-
surement method developed to evaluate complex systems where groups of people differ-
ing in expertise directly and indirectly affect system outcomes. The approach is based on the
principles of hypothesis formulation and testing. It incorporates features of the algebraic
modeling approach to measurement where meaningful subjective scale values derive from
tested theories; it provides additional features necessary for coalescing judgments obtained
from different groups of system experts into an overall perceptual outcome.

In the STF approach, a complex system is divided into units corresponding to tasks per-
formed by different groups of system "experts." Factors and outcomes describing each unit are
identified with a body of experts; causal hypotheses in the form of algebraic functions that
specify effects of those factors on judged outcomes are tested and rejected if they are not sup-
ported by the data. The algebraic functions that describe the interrelationships between fac-
tors and outcomes in each unit are used to predict outcomes under different conditions
described by different system capabilities. They provide a basis for assessing extant capabili-
ties, investigating the effects of system and concept modifications, and determining configura-
tion alternatives or function requirements to meet system objectives.

This report introduces and is a primer of the STF method. It outlines the steps
involved in the approach, describes how those steps can be accomplished, and discusses mea-
surement principles and techniques to aid the reader's understanding of the basis for the
approach. The report is organized as follows:

. Development of initial and alternative structural and functional (subjective
transfer function) system hypotheses.

• Examples of how to design judgment experiments so as to provide tests of
those hypotheses.

* Discussion on determining STFs and the final system structure.
* How final structure and functions are used to evaluate a system. 5

The last section briefly discusses two other subjective measurement approaches commonly
used for analyzing systems, their measurement problems, and how the STF approach provides
resolutions to those problems.
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I. OVERVIEW OF THE SUBJECTIVE TRANSFER
FUNCTION APPROACH

The Subjective Transfer Function (STF) approach is a subjective measurement method
that relies on "expert" judgment for analyzing complex systems where many factors either
directly or indirectly affect system outcomes. Some examples of complex systems that have
received attention in the literature are military command and control, education, transporta-
tion, and management. Examples of evaluation interests would be to determine how such Air
Force command and control factors as communication and information systems affect the per-
formance of air missions and how such factors of a management system as computer process-
ing capabilities and employee training programs affect job performance.

A major problem in any evaluation procedure is to define the system in terms of its fac-
tors and outcomes in such a way that causal hypotheses about effects of those factors on the
outcomes can be tested and rejected if the data do not support them. This feature of
hypothesis testing is an integral part of the STF approach, which is based on the algebraic
modeling approach to measurement. The idea behind this approach is that subjective scale
values associated with information being judged have meaning with respect to the theory that
describes the judgment process. When a judgment theory passes stringent tests of its predic-
tions, the scale values are a by-product of the theory and have substantive meaning with
respect to the theory. This approach includes functional measurement (Anderson, 1970, 1979, . -

1981), conjoint measurement (Krantz et al., 1971; Krantz and Tversky, 1971), and the princi-
ples of stimulus scale convergence and scale-free tests (Birnbaum, 1974; Birnbaum and Veit,
1674a,b), which are important tools for testing judgment theories.

In the STF approach, complex systems are analyzed from the perspective of the "expert,"
who by definition knows and understands the system. Typically, different groups of experts
know about different aspects of the system. Experts from each group make judgments about
outcomes resulting from their tasks that would be expected under different descriptions of sys-
tem capabilities. The judgment theory (STF) for each expert group specifies the effects of the
different system capabilities on these judged outcomes. The set of STFs across expert groups
links the outcomes associated with different tasks within the system to an outcome(s)
corresponding to a measure(s) of overall system effectiveness.

The steps involved in the STF approach can be outlined as follows.

* Develop an initial structure of the system. This requires identifying the system effec-
tiveness outcomes of interest and postulating the factors thought to affect them.

o Postulate hypotheses about how factors affect the expert's perception of those out-
comes. These are in the form of algebraic functions (referred to as subjective transfer
functions) that specify how subjective values the "expert" associates with the factors
are combined to form a perception about the outcome.

o Construct experimental designs that permit tests among the alternative hypotheses.
e Collect judgment data. The experimental designs are incorporated into a paper and

pencil questionnaire format and fielded to the "expert" respondents.
o Analyze judgment data to determine the complete model (the system factors and the

STFs that link factors to outcomes) of the system that best explains the data.



Evaluate system capabilities using the model. Once a complete model of the system
has been determined, it is used to evaluate how different system capabilities (defined
by different factor descriptions) affect the outcomes, and their tradeoffs in affecting
those outcomes.
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II. DEVELOPING STRUCTURAL AND FUNCTIONAL
HYPOTHESES

A complex system structure depicts the factors that make up the system and the direct
and indirect effects they have on system outcomes. The STFs specify the causal links among
the factors and outcomes. Alternative structures and STFs have to be hypothesized before
data are gathered, because tests of the hypotheses are possible only when experiments have
been appropriately designed. In this section, we discuss procedures involved in developing
hypotheses of system structures and STFs.

STRUCTURAL HYPOTHESES 0

Structural development requires interaction with system experts. For many complex sys-
tems different people are expert in different parts of the system; we therefore develop a struc-
ture of each part of the system in conjunction with a body of experts. The researcher's job is
to work with the experts to identify and define important system factors and outcomes that
both make sense to the expert and can be manipulated in experimental designs.

Identifying Outcomes and Factors

The first step is to identify the outcomes produced by the system that provide the impor-
tant external measures of the system's effectiveness. Next one identifies factors thought to
directly affect these outcomes. Some or all of these factors may represent outcomes that are
produced within the system (referred to as suboutcomes) and are themselves affected by other
system factors. A hierarchical causal representation of the system develops when system fac-
tors are identified for suboutcomes until all suboutcomes are affected only by factors that
represent system input characteristics or basic system features.1 Such factors are called primi-
tive factors.

As an example, Fig. 1 shows a structure for a tactical air command and control process
that was investigated using the STF approach (Veit, Callero, and Rose, 1982). The structure
contains one factor/outcome set (upper portion of the figure) and one factor/suboutcome set
(lower portion of the figure). Such sets are referred to as experimental units. In f'g. 1 the two
experimental units correspond to two different groups of experts. The group corresponding to
experimental unit 1 (upper portion) performs the immediate targeting task of pairing tactical
aircraft with important enemy ground force targets in a timely manner.2 The single overall
measure of system effectiveness in this example is how well U.S. Air Force officers perceive
they can perform their immediate targeting task under various conditions having to do with
the information and equipment they work with. The experts corresponding to experimental
unit 2 (darker section-Target Identification) are expert in identifying enemy targets.

'If there are system inputs or basic system features that are of particular interest with respect to their effects on
specified system outcomes (for example, characteristics that correspond to equipment being considered for purchase),
they need to be included in whatever detail is necessary to satisfy the evaluation goals.

21mmediate targeting involves recognizing that an important target exists, determining the availability of tactical
aircraft that have the proper weapons to destroy the target in the prevailing weather conditions, and directing the air-
craft to attack the target.

3.
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5

In experimental unit 1, six factors are hypothesized to affect Immediate Targeting
directly; in experimental unit 2, seven factors are hypothesized to affect Immediate Targeting
indirectly, through the suboutcome Target Identification. 3 Their definitions are presented in
Table 1. (Outcomes define the judgment task; factors define system capabilities.) .

Because factors are manipulated in experimental designs (described and illustrated later), 0
levels have to be identified for each factor. Factor levels that were selected for the factors
shown in Fig. 1 are presented next to each factor definition in Table 1. The factor levels
should span the range from the worst to the best capability that might be expected over the
time period of interest. This feature is important if future conditions or characteristics of
future systems are to be built into the model for evaluation purposes. Selection of factor levels
between the endpoints may be guided by such things as deb.r.ptions of equipment actually
being considered for research, production, or purchase, and descriptions of existing equipment
capabilities. From three to five factor levels are usually sufficient for experimental purposes,
as will be discussed in the section on experimental design.

Table 1

DEFINITIONS OF FACTORS AND OUTCOMES FOR IMMEDIATE
TARGETING STRUCTURE SHOWN IN FIGS. I AND 3

A. Experimental Unit 1 (Immediate Targeting Experts)

Judged Outcome: The percent of force application opportunities .

that could be exploited in a timely manner

Factor Definitions Factor Levels

Target Identification kpercent of

important force elements identified) 90 60 30 10 0

Facility Operability (percent of
immediate targeting activities

that can be supported by the
facility) 90 60 30 10

Alert Forces (status of the Alert .
Forces accessible in the C2 facility) 90 60 30 10

Airborne Forces (status of the airborne
forces accessible in the C2 facility) 90 60 30 10

Weather (currency of the reliable
weather information) 15 min., 1 hr., 3 hrs., 12 hrs. S

Dissemination (percent of the forces
that can be tasked in a timely
manner) 90 60 30 10

i0,T

3Factors hypothesized to affect an outcome or suboutcome pertaining to a particular expert respondent population
must not exceed the span of knowledge of the particular expert group.

-ft
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Table 1 (Continued)

B. Experimental Unit 2 (Targeting Experts)

Judged Outcome: The percent of important enemy targets that
could be identified in a timely manner

Factor Definitions Factor Levels

Vehicle Location/Classification Locate and classify in all weather - -

(ability of sensor systems to Locate (not classify) in all weather 41

locate and classify enemy vehicles) Locate and classify in clear weather

Vehicle Coverage (percent of enemy
vehicles that have been observed) 90 60 30 10

Vehicle Currency (time interval
between the observation of enemy *
vehicles and the data's avail-
ability for processing) 5 min., 15 min., 30 min., 1 hr.

Processing (the means by which enemy Fully computerized interpretation.
vehicle and emitter information is Human uses computer to graphically -

interpreted) display information; human inter- 9
pretation.

Human uses computer to sort textual

information; human interpretation.
Human sorts hard copy, textual infor-

mation; human interpretation.

Emitter Location Accuracy (accuracy
with which enemy emitters are
located) lOm, lOOm, lO0Om

Emitter Coverage (percent of the
enemy emitters that have been
observed) 90 60 30 10

Emitter Currency (time interval
between the observation of
emitters and the data's avail-

ability for processing) 5 min., 15 min., 30 min., 1 hr.

-o
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The structural hypothesis shown in Fig. 1 says that part of the ability to do immediate
targeting depends on how well the targeteers are able to identify important enemy targets.
Target Identification is a contributing factor in the first experimental unit and an outcome in
the second experimental unit. When a factor serves this dual purpose, it is necessary to define
it in the same terms (see Table 1) for the two groups of experts to satisfy the transfer feature r
of the STFs (discussed later).

The structural representation shown in Fig. 1 hypothesizes two STFs. The first (T1)
specifies the causal link among the six factors affecting the immediate targeting outcome, and
the second (T2) specifies the causal link among the seven factors affecting Target Identifica-
tion. These functions are referred to as subjective because they are models of judgment
processes that are not directly observed occurring between the time a stimulus is perceived
(e.g., a description of the system's capabilities) and the time a response occurs (e.g., judgment
of task performance). They are referred to as transfer functions because, when their functional
forms have been determined and they are being computed to evaluate a particular system, the
output of one function transfers for use as an input value to the function above it. For exam-
ple, the output of T2 in Fig. 1 would identify the target identification factor level needed to S
determine that factor's subjective input value to Ti. (Examples of using STFs are presented
later.)

Figures 2-4 illustrate a problem commonly encountered when one is structuring complex
systems. At issue in these problem domains is the likelihood an individual will join the Air - .
Force under varied benefit packages. The factors selected would reflect benefits being

Joining the Air Force Outcome

Likelihood of joining the Air Force

Yearly Dental Deductible Mcal Deductible Housing
starting Ion dental for M~~l or dependenll Huig:
sar care I care care r benefits'
salar deed eia care 0

$ % covered for $ % covered for $
dependents dependents

11 primitive
factors

Child care Dental care Major Psychiatric Retirement
not covered medical carep r o v i s i o n sb y p l a n.

type type ceiling for % covered % of salary
dependents for contributed

dependents by employer
to plan

Fig. 2-Structure depicting hypothesized factors affecting
the likelihood of joining the Air Force
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considered for modification, say by the Congress. The idea is to measure the effects of the fac-
tors on judged likelihood of joining the Air Force.4 This structure depicts 11 factors affecting
the judged outcome. Experimental manipulation of the factors requires that some items
presented to respondents for judgment contain a factor level of each factor. Eleven job charac- -

teristics seem to be too many to judge simultaneously,5 making it necessary to reduce the
number of factors considered at one time.

We can reduce the number of factors by hypothesizing a subset of them to affect one or
more suboutcomes that are meaningful within the framework of the evaluation goals. For
example, the seven factors describing the health-care plan could be hypothesized to affect per-
ceptions of the percent of competing organizations that have a better plan, thus creating the 0
initial structure shown in Fig. 3. The second experimental unit in Fig. 3 has a different
respondent population associated with it-people who coordinate health-care plans.

The dependent variable defined for the new experimental unit should be meaningful for
the group that will judge the factor as a dependent variable (e.g., health-plan coordinators for
experimental unit 2 in Fig. 3) and for the group that will judge it as an independent variable
(Air Force recruiting target population). The creation of a new experimental unit need not
result in a new respondent population. When the same respondent group is expert in both out-
comes, they could be asked to make judgments about their two different tasks at different
times, or different subsets of the expert group could be assigned to the different experimental
units.

Another alternative would be to separate the health-care plan suboutcome into a dental
plan and a medical plan suboutcome, if it is of interest to investigate how each plan individu-
ally contributes to the decision to join the Air Force. These two types of benefits could be
depicted in separate factor/suboutcome sets, as in Fig. 4. The structure shown in Fig. 4 is the
most appealing initial structure of this problem domain because it contains the fewest factors
associated with any one respondent group (experimental unit).

Identifying Alternative Structures

Structural alternatives refer to alternative hypotheses about the number of STFs linking
factors to outcomes. Alternative structural hypotheses arise from different hypotheses about
how the expert combines information included in a description of a system's capabilities.
Some of these hypotheses emerge through interaction with the expert respondents during

structure development. Others emerge during data analysis, illustrated later.
Consider as an example the immediate targeting structure shown in Fig. 1. An alterna-

tive structural hypothesis for the Air Force targeteers (experimental unit 2) is depicted in the
lower portion of Fig. 5. This structure proposes that targeteers combine information about
enemy emitters such as radars and radios separately from information about enemy vehicles;
then they take the subjective values of those outputs and combine them with their value asso-
ciated with the processing capability factor. This alternative structural hypothesis requires
three STFs (T3, T4, and T5). The two separate combination processes are represented
diagrammatically by inserting two intermediary factors-Vehicles and Emitters-into the struc-
ture. (An intermediary factor is one that is not identified by factor levels because it is not

4Such factors as active members' medical care that are held constant (not manipulated in experimental designs) are
not included in the structure but are presented as background information to set the context for judgment.

5Our research has indicated that between five and seven pieces of information (depending on the interrelationships
among the factors) are maximum; Miller (1956) has estimated seven ± two pieces of information to be maximum for
processing information.

-9
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manipulated in experimental designs. It depicts the process of separately combining a subset
of factors in the experimental unit.)

Other structural hypotheses would change the number of paths and STFs. For example,
an alternative structure for experimental unit 1 might result from the hypothesis that an
immediate targeting expert (experimental unit 1 of Fig. 1) combines information about the
three factors concerning their friendly forces (Alert Forces, Airborne Forces, and Weather)
separately from information about their other capabilities-Target Identification, Facility
Operability, and Dissemination. This is depicted by inserting the intermediary factor Execu-
tion Status Information in this part of the structure. This alternative structure requires two
STFs (T1 and T2) for experimental unit 1. Other structural hypotheses would change the S
number of paths and STFs.

For our second problem domain concerned with Air Force recruitment, an alternative
structure to Fig. 3 is shown in Fig. 6. It says health-care plan coordinators combine informa-
tion about dental plans separately from information about medical plans. This alternative
hypothesis is depicted by inserting two intermediary factors (Quality of Dental Plan and Qual-
ity of Medical Plan) into the structure.

Note the difference between including the medical- and dental-plan factors in Fig. 4 and
in Fig. 6. In Fig. 4 they serve both as dependent factors about which respondents make judg-
ments and independent factors hypothesized to affect judgments of likelihood of joining the Air
Force. If Fig. 4 was selected as the initial representation, they would appear in the final struc-
ture as shown. However, in Fig. 6, they are used only to depict one alternative structural - -

hypothesis about how respondents might combine information in making judgments of percent
of other organizations having a more attractive plan. They are neither dependent nor indepen-
dent factors in the judgment experiments and may or may not appear in the final structure,
depending on what the health-plan STF turns out to be after the judgment data are analyzed.

It is important to specify as many of these alternative combinatorial hypotheses as seem
appropriate before data collection, especially in the larger (4-6 factor) experimental units, so
that the experimental designs insure adequate tests among them-that is, provide a basis for
knowing which of the alternative structures best accounts for the data.

The illustrations used for discussing the formulation of structural hypotheses have been
fairly small. Figure 1 is composed of only 13 factors to be manipulated in experimental
designs, one suboutcome, and one outcome. Many systems are much larger than this. For

example, the tactical air command and control system shown in Fig. 7 is composed of 12 STFs,
25 factors to be manipulated, six intermediary factors, six suboutcomes, and a final outcome;
and that depicts only one-third of the structure hypothesized to affect the final outcome, the
land battle. (The research pertaining to this structure is presented in Callero et al., 1984.)

STF HYPOTHESES

STF hypotheses are algebraic models specifying the subjective (unobserved) processes
between the perception of a stimulus (e.g., a questionnaire item) and the occurrence of a
response. An outline of these processes is shown in Fig. 8. The outline is for three factors but
could be extended to include any number. The observed stimuli on the left would be factor -0
levels from three different factors. The outline suggests that the respondent first transforms
each factor level (Si, Si, Sk) to a scale value (si, Si, S) using some function, H (referred to as the
utility or psychophysical function), then combines these values according to some combination
function (T) to form an integrated impression (rijk); then the respondent transforms thq

- 02
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(observed) (subjective) (subjective) (subjective) (observed)
Factor Scale values Combination Combined Overt

level function impression - response
response

scale value S
H T J

Si -- -- ---- 5.

Si j r -ijk ..--. . Rijk

Sk --------- s k

a •

Fig. 8-Outline of subjective measurement

psychological impression to an overt response (Rijk) by the function, J. The judgment stages
can be written:

si = H(Si) for stimulus i , (1)

r& = T(si, sj, Sk) , (2)

i and
Rijk = J(rUk) • (3)

Thus, an STF (T in Fig. 8 and Eq. (2)) is a perceptual theory of the expert's judgment process.
It specifies how the subjective values the expert places on different factors affect his judgments
(e.g., ability to perform a task).

Table 2 describes some algebraic functions that might be considered as STFs at the
outset of a complex system investigation. Ideas about what functions to entertain come from
the judgment literature and previous research in the problem domain of interest. The func-
tions in Table 2 have been specified for three factors but could be extended to include any
number. The r, w, and s parameters are as defined in Eqs. (1)-(3); w0 and so are "initial esti-

* mate" parameters-what the response would be in the absence of specific information. The J
function shown in Eq. (1) relating subjective responses, r, to observed responses is not indi-
cated in these equations. Its determination is discussed in the section on the scale-free design.

Each function described in Table 2 makes a different prediction with respect to the pat-
tern the judgment data should follow when appropriate experimental designs are used. For
example, one prediction all of the functions shown in the upper panel have in common is that

L of no interactions among the factors. Conversely, the functions in the lower panel can account 0-
for interactions among the factors. The functions within each panel make other differential
predictions with respect to the judgment data. Some of these are illustrated in the next sec-
tion.

The form of the STFs considered as possible causal explanations of factor effects on
m judged outcomes must be specified in advance so that experimental designs allow adequate
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Table 2

POSSIBLE STFs

A. Noninteractive functions

r SA+ SB Sc a Additive

W AS 4W B SB I + W C SC k 0

r= Averaging
wA +wB + WC

W0 S0 + WASA + WBSB + WcSck  Relative-weioht

r = (averaging w.
WO + w A + wB + wC initial impression)

B. Interactive functions

r = SAiSBjSCk + a Multiplicative

w0s0 + WA SA+ WBSB + WCC

r = + lSMAX-sMIN) Range
W0 +wA +wB +wC 13--

w0 s 0 + WAiSAi + WBSB +wCkSCk k

r = Differential-weight
w0 +WA +WB +WC0 W i W k

*AI equations we for three factors: A, B, and C. The parameters of the functions are as 0
fojows: sAI, qju, and sCk are the subjective values for the ith, 1h, and kth levels of factors A,
8, and C. respectively; WA, wB, and wc , are the weights associated with factors A, B, and
C, respectively (a subscript Is added when the scale value varies with the factor level); r is
the sulblectlve response; w0 and so are the weight and scale value associated with the initial
npresalon (what the response would be in the absence of specific information); w denotes

the weight of the rawge term; and a is an additive constant.
PS

tests among their predictions. When tests of an STF support it as an appropriate explanation
of respondents' judgments, subjective values associated with the factors and outcomes (the s, w,
and r parameters specified in the functions shown in Table 2 and outlined in Fig. 8) are
known; they are the least-squares estimates of the function. 6  0

t Least-squares estimates are preferred over maximum likelihood procedures for estimating parameters primarily
because no assumptions are needed on the distribution of the responses. When distributional assumptions are
required, as in maximum likelihood, the judgment theory must incorporate those assumptions, resulting in a more com-
plicated theory.

PS

sS



III. CONDUCTING JUDGMENT EXPERIMENTS

After the formulation of the alternative structural and functional hypotheses, experimen-
tal designs have to be carefully selected so as to permit tests among the hypotheses. These
designs are translated into a paper and pencil questionnaire and fielded to the appropriate
expert respondents.

DESIGNING EXPERIMENTS TO TEST HYPOTHESES

The experimental design is crucial to testing among the unique predictions of the STFs
under consideration. The design is primarily guided by what the researcher knows about the
unique predictions of the STFs. Alternative structural hypotheses guide the researcher in
selecting factor combinations when experimental units have four or more factors. Because
STF predictions play such a vital role in experimental design, they will be discussed together.
First we describe a questionnaire item that results from an experimental design.

Experimental designs produce factor level combinations. Each combination is a descrip-
tion of the system's capabilities. An example of such a description for the first experimental
unit in Fig. 1 might read as follows:

30 percent of the important 2nd echelon force elements are identified in a timely fashion.
Facilities can support 60 percent of the necessary immediate targeting activities. Tasking can
be correctly communicated to 60 percent of the forces in time. There is timely access to the
status of 10 percent of the Alert and Airborne forces. Weather data are three hours old.

Experts might be asked to judge how well they could perform their immediate targeting task in
a command and control system that had these capabilities.

Next, we present examples of fully crossed factorial designs, which can be thought of as
the "backbone" of other designs, and illustrate predictions that can be assessed from factorial
designs.

Factorial Designs: Tests Between Interactive and
Noninteractive Functions

In a fully crossed factorial design, every level of every factor is combined with every level
of every other factor in the design. An example of a two-way factorial design of the Alert and
Airborne Forces factors shown in Fig. 1 and described in Table 1 is shown in Panel A of Fig. 9.
There are four factor levels for each of the two factors, so this 4 x 4 design produces 16 cells.
Each cell represents a situation that would be described in a questionnaire item. For example,
the upper left-hand cell would represent the situation where the command and control system
had timely information about 90 percent of their airborne and alert forces.

A complete three-way factorial design of the alert forces, airborne forces, and weather fac-
tors shown in Fig. 1 and described in Table 1 is shown in Fig. 9B. Again each of these factors
has four factor levels; this 4 x 4 x 4 design produces 64 cells or questionnaire items. For
example, one item would describe a command and control facility that has timely access to 90
percent of their alert and airborne forces, and weather information that is only 15 minutes old.
As the factors and factor levels increase, the questionnaire items generated from the fully
crossed design increase rapidly.

17
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A. Two-way factorial design

Airborne Forces

90% 60% 30% 10%
S

90%

o -- 16
Questionnairet

30% items

10%

B. Three-way factorial design

Airborne Forces

90% 60% 30% 10%

15 min Weather
90%1 hr

3 hrs
§60% 12 hrs

<30%

10% -- 64
Questionnaire

items

Fig. 9-Example of factorial designs

Factorial designs are useful for assessing main and interaction effects among factors.1

When a proposed factor has no effect on judgments (after repeated tests), its appropriate
parameter (either its weight or the scale value as the data and STF indicate) is set to zero in
the STF. Tests of interaction effects provide a basis for choosing between noninteractive and
interactive functions (panels A and B of Table 2) for those factors involved in the test. The
hypothetical data shown in Fig. 10 illustrate this. For the two examples shown in Fig. 10,

'Manipulating the levels of a single factor in a one-way design will also provide tests of main effects. The factorial
combination of factor levels provides an additional test of interactions among the factors included in the design. -

0
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assume that the J function in Eq. (3) is linear (this assumption is discussed in the section on
scale-free tests).

The data from either panel A or panel B of Fig. 10 could have been obtained from the
4 x 4 design in Fig. 9A. Data are displayed graphically in Fig. 10 for diagnostic purposes.
Mean response 2 is plotted as a function of one of the factor levels (Airborne Forces) with a
separate curve for each level of the other factor (Alert Forces). These data exhibit a large
interaction, an analysis of variance test of which would be significant. However, the F test
would tell you nothing about the nature of the interaction, which is critical for deciding if the
interaction should be interpreted, how it should be interpreted (what the experts are trying to
communicate about the variables), and which function(s) out of many might account for the 3
data. Figure 10A provides information about these issues. First, it reveals that the interaction
is systematic; it is not the result of a lot of scatter (which might cause points on different
curves to cross) or outliers.3 Second, the interaction is divergent; respondents are saying that
the less known about the status of the Airborne Forces, the less of a difference it makes how
much is known about the status of the Alert Forces and vice versa. Both the range and multi-
plicative models shown in Table 2 can account for data that look like this. It is possible to
choose between these two interactive functions through additional experimental designs and
graphic diagnostics that will be illustrated later.

What if the data from the design shown in Fig. 9A turned out like those shown in Fig.
1OB? The parallel form of these curves is what would be predicted by noninteractive functions -
such as those shown in Panel A of Table 2.4 An analysis of variance test of these data would
yield a nonsignificant interaction. Again however, the statistic does not provide a diagnostic
for the researcher. In some cases, graphic inspection reveals small, systematic interactions.
Systematic trends in the data should not be ignored, because the goal is to capture and mea-
sure such trends. In those cases, both interactive and noninteractive functions should be
entertained to explain the data. However, the data in Fig. 10B are perfectly additive (non- -

interactive). Both additive and averaging functions can account for the observed parallelism.
Additional experimental designs and graphic diagnostics (illustrated in the next section) are
needed to distinguish between these two types of functions.

Tests among proposed interactive and noninteractive functions become more powerful as
more factors and factor levels are included in the design as can be seen by a comparison of the
lower two panels with the upper two panels in Fig. 10. The hypothetical data shown in Figs.
10C and 10D are for two levels of each factor. There are many more ways in the larger designs
(Panels A and B) for curves to exhibit nonparallelism. Therefore, the idea that one of the
class of additive functions is the appropriate combination process is more convincing when
parallelism is observed. Similarly, when systematic interactions are observed with larger
designs, it becomes more convincing that the observed systematic trends should be interpreted. 0

Factorial designs provide a basis for discerning interactive and noninteractive (additive)
effects. However, they are not sufficient for distinguishing among models within either class.
Next we discuss how graphic analyses combined with appropriate experimental designs can be
used to rule out theories within the class of additive or interactive functions.

2Re ,nses across experts would be averaged only for those respondents exhibiting the same divergent interaction.

Data could also be plotted for individual respondents.
3Undue scatter and outliers tend to occur when respondents have not been sufficiently warmed up on the task or

when questionnaires are formatted such that some item comparisons can be easily overlooked.
4The independence assumption associated with the class of additive functions predicts that curves should be paral-

lel, not linear. That is, the vertical distances between the points on any two curves should be the same, independent of
the value on the x-axis. .

- - - - - - - - -
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A. Interactive data B. Additive data
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(panels A and B correspond to the 2-way design shown in Fig. 9, panel A
Panels C and D would be data obtained from 2 x 2 designs)
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Factorial Design Extensions Permit Additional Tests of Hypotheses

One extension of factorial designs provides the researcher with greater diagnostic capabil-
ity for distinguishing among functions; a second provides a test of the form of J shown in Eq.
(3) relating subjective to objective responses.

Designs that Vary Amount of Information. Experimental designs must vary the
amount of information contained in the questionnaire items in order to test among more of the
unique predictions of functions shown in Table 2. Figure 11 presents a complete experimental
design for three factors (Alert Forces, Airborne Forces, and Weather) that varies the amount of
information. In this design, every possible item with one, two, or three pieces of information
has been included; that is, every possible one-way and two-way factorial design has been
included along with the three-way factorial design. Each cell in the first three one-way
matrices produces an item with just one piece of information. An example of an item contain-
ing one piece of information from the first one-way design might read:

The status of 60 percent of your Alert Forces is known.

An item from the third two-way matrix might read:
The status of 30 percent of your Alert Forces is known.
The reliable weather information is one hour old.

An item from the three way design might read:
The status of 10 percent of your Alert Forces is known. t
The status of 90 percent of your Airborne Forces is known.
Your reliable weather information is three hours old.

The complete design for three factors generates 124 questionnaire items. When items vary in
amount of information, respondents are sometimes instructed to assume a baseline (current,
planned, or otherwise defined) capability level for factors not presented. The decision to
include this instruction depends on how reasonable the task seems to the respondents with the
instruction omitted.

The graphs of hypothetical data presented in this section illustrate how the design feature
of varying amount of information assists in diagnosing among functions. If data were obtained
for the entire design shown in Fig. 11, it would be possible to test between a multiplicative and
range function if the data were interactive as in Fig. 10A. It would also be possible to distin-
guish between additive and averaging models if the data were noninteractive as in Fig. 10B.
The different predictions of these models are illustrated in Fig. 12. The hypothetical data plot-
ted are the same as those shown in Figs. 10A and 10B, except for the dashed curve; data for
the dashed curve would have been obtained from a one-way design of the factor plotted on the
x-axis. L

For each panel in Fig. 12, the relationship between the dashed curve (data that would be
obtained from a one-way design) and the other curves in the figure (data from a two-way
design) represents the prediction of the function written in the upper left-hand corner. In Fig.
12A, the multiplicative function predicts that the dashed curve should follow the same increase
(or decrease) in slope that would be expected from the family of curves. This prediction can be
seen from the algebraic formulation of the multiplicative function. When two factors are L

presented for judgment, this model predicts that the response should follow the form

r - AiBj. (4)
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Fig. 11-continued

S

When factor A is presented alone, the function predicts

r = Aix, (5)

where x is the value of missing information. The two values are still multiplied and the curve

that is obtained with only one piece of information should have a slope that follows the slopes
of the family of AB curves. The height of the dashed curve (A alone) provides an indication of
the value of the missing information (the value associated with the missing Alert Force infor-

mation in this example).
If a range function is the appropriate function (Fig. 12B), the dashed curve should have a

steeper slope than any of the other curves. Again, this can be seen from the algebraic form of

S
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A. Multiplicative function B. Range function
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the range function. When two factors (A and B) are presented for judgment, the function
predicts that the response should follow the form

W050 + WASA, + WBSBJ
r = + W(Smax - Smin) . (6) I

WO + WA + WB

When only one factor (e.g., factor A) is presented for judgment, the weight of the missing
information goes to zero and the response should follow the form

W0 S0 + WASA (7)

w0 + WA 3

The denominator has decreased and thus the slope of A should increase, as shown by the
dashed curve in Fig. 12B.5 Again, the height of the dashed curve provides an indication of the
value of the missing information. The same reasoning follows for distinguishing between an
additive and an averaging function. The different predictions of these two functions are shown
in Figs. 12C and 12D.

The design illustrated in Fig. 11 provides stringent tests among these four functions. The
tests are stringent because the design offers repeated opportunities for the predictions of a pro-
posed function to fail. For example, if an interactive interpretation is appropriate for two fac-
tors (A and B), an interaction between them should be observed in both the two-way and the
three-way design. If the multiplicative function is the appropriate interactive function, a graph
with A on the x-axis with a separate curve for each level of B together with A alone should
look like the graph with B on the x-axis with a separate curve for each level of A together with
B alone; they should both look like Fig. 12A. If interactions were observed among all three
factors (A, B, C) and a multiplicative function was appropriate, the form shown in Fig. 12A
should be observed for all factor pairs as well as for graphs of all three factors (e.g., the BC
design plotted on the x-axis with a separate curve for each level of A together with BC alone).
These same plots should follow the forms shown in 12B, 12C, or 12D for a range, additive, or
averaging function, respectively.

Other graphic diagnoses of data are possible when the design shown in Fig. 11 is used.
For example, the additive function shown in Table 2A predicts that the effect of a factor
should be independent of the factors with which it is paired. This prediction can be assessed
graphically for each factor separately. Figure 13A illustrates this for factor A. The top curve
in the figure represents data that would be obtained from the AC design averaged over C; the
next curve down, the data from factor A presented alone; the next curve down, the data that
would be obtained from the ABC design averaged over B and C; and the bottom curve from the
AB design averaged over B. All the curves have the same slope, which is predicted by the
additive model shown in Table IA. ,

An averaging model (e.g., the relative-weight model shown in Table 2A) predicts that the
effect of a factor depends on the number of other factors it is paired with. Thus, the slopes of
the same curves should vary with amount of information contained in the item. This predic-
tion can be seen from the curves in Fig. 13B. Each set of four curves is for a different factor.
The curves in Panel BI would be data from the four designs in which factor A is included (the
A alone-top curve-AB, AC, and ABC designs). Similarly, the curves in Panels B2 and B3

5ln the range function, the effect of the missing information is incorporated in the relative weight of the initial im-
preuuion, s, which is greater when information is missing. The range term drops out in Eq. (7), because only one fac-
tor is presented for judgment; the relative weight of S,, is w,, fw,, w..

. . . . . . . . . . . .. . . . . " . . . . . . . . . . - . . . i I l i i . . . . . I
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would be data from the B alone, AB, BC, ABC, C alone, CA, CB, and CAB designs. The
slopes of each set of curves not only reveal interactions (which would violate an additive func-
tion) but they reveal the order of the weights of the averaging function. The curves in Panel
B1 say that the weight of factor C is greater than the weight of factor B, because its slope is 0
less. This prediction can be seen from the functional form of the relative weight function. The
slope of A when paired with just C is

W A  :w, (8)
wO + WA + wcID

because the judgment would follow the model

WASAj W080 + WCSCkr+-.+(9)

WO + WA + WC WO + WA + WC

However, the slope of A when paired with B would be

WA (10)

WO + WA + WB

The only difference in the two slopes in Eqs. (8) and (10) is the weight of factor C in Eq. (8)
versus the weight of factor B in Eq. (10).6 Using the same reasoning, one would conclude that
the weight of factor C is greater than the weight of factor A from the order of the curves in
Panel B2 of Fig. 13, and that the weight of factor B is greater than the weight of factor A from
the order of the curves in Panel B3. Thus the experimental design shown in Fig. 11 would per-
mit a test of transitivity of the values of the weighting parameters in the averaging models.7

The purpose of experimental designs is to test unique predictions of algebraic functions
under investigation. When the predictions of a particalar function are repeatedly observed in
the data, that function becomes more and more credible as the appropriate function to explain
the data. When the data do not follow the predictions of any of the hypothesized functions,
they would all be rejected as appropriate theories of the data.

Scale-Free Designs: Tests of J. The scale-free design (Birnbaum, 1974; Birnbaum
and Veit, 1974b) was developed to resolve the measurement problem of when it is appropriate
to transform observed interactive curves such as those shown in Fig. 10A to parallel curves
(e.g., Fig. 10B). There are two conflicting schools of thought in psychological measurement
about how to handle observed interactions. One is to assume that the function relating
observed to subjective responses (J in Eq. (3)) is only monotonic. This view is based on the
idea that only ordinal (not metric) information is contained in responses and that an additive
function is most appealing because of its "simplicity." Therefore, if interactions are observed
in the data and a monotone transformation s can be found to transform the interactions away
(transform the nonparallel to parallel curves), this would be the "appropriate" procedure and
tests would be among additive functions. (Of course if curves were not monotonically related

6If the weights of factors B and C were equal, the slopes of the A(B) and A(C) curves would be the same. This is
RB why the slopes of curves from designs that vary information (e.g., A, A(B), and A(BC) in Panel Bi) need to be com-

pared in order to differentiate between an additive and an averaging function.
7To derive weight independently from scale value parameters in models where these two parameters form a prod-

uct, it is necessary to vary the amount of information in the experimental design. This problem is discussed and illus-
trated further in Norman (1976) and Birnbaum and Stegner (1981).

8A monotone transformation changes the relationships among the data points while maintaining their original
order.

I
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to a set of parallel curves, the observed interactions would be interpreted-tests would be
among interactive models.) Another approach is to assume that metric information is con-
tained in the responses (the J transformation relating r to R in Eq. (3) is linear) and thus to
explain observed interactions. The scale-free design is a method for testing which of these p
assumptions is appropriate. That is, the design provides a basis for deciding if observed
interactions reflect the underlying subjective process (T in Fig. 8.).

The importance of such a design feature can be viewed with respect to Table 2. If
interactions are observed in the data and are interpreted as perceptual, tests would be among
interactive functions (e.g., those described in Table 2B); subjective scale values would be - ..
obtained from the interactive function that best explained the data. However, if the interac-
tion was transformed away, tests would be among noninteractive functions (those described in
Table 2A); a different function and set of subjective scale values would be required to explain
the transformed data.9 Both interpretations of the data cannot be "right." The scale-free test
provides a testable basis for deciding whether to transform away observed interactions.

The basic idea of the scale-free test is that, by embedding two combination processes in
one task, a test of the interaction among the factors for one of the combination processes is
possible without making any assumptions on the form of the function relating observed to sub-
jective responses (J in Eq. (3)) for that process. Take, for example, the question, "Do the fac-
tors Emitter Location and Emitter Coverage (Fig. 1) combine additively in the combination
process?" An example of a task that requires two combination processes would be to have tar-
geteers compare two command and control systems in terms of the percentage of important
enemy targets they could identify; each system would be described by an emitter location and a
coverage capability. The first combination process requires that respondents combine the
enemy emitter and location capability information that describes each system; the second pro-
cess requires that they compare the two command and control systems (e.g., judge how much
better they could perform their targeting task with one system than with the other). The -

hypothesis being tested might be that the first process follows an additive combination func-
tion and the second process a comparison (subtractive) function as instructed. This hypothesis
can be written

Rijk| = J[(Li + Cj) - (Lk + C|)], (11)

where Rjii is the observed comparison response, Li, Cj are the ith and jth levels of Emitter
Location and Coverage making up one command and and control description, Lk and C are the . -

kth and Ith levels of Emitter Location and Coverage, respectively, making up the other com-
mand and control description, and J is some monotonic function relating subjective to observed
comparison responses.

The design that provides a scale-free test of additivity for Location and Coverage (and S
hence a test of Eq. (11)) requires a factorial design of the Location and Coverage factors and of
the Location/Coverage combinations being compared. This scale-free design is illustrated in
Fig. 14. For three factor levels of Emitter Location and four factor levels of Emitter Coverage
(Table 1), a complete 3 x 4 (Location x Coverage) factorial design would produce 12
Location/Coverage combinations as shown in Fig. 14A. These 12 combinations are then used
to form a 12 (rows) x 12 (columns) factorial matrix. Each cell of this design contains descrip-
tions of two command and control systems; each system is described by a Location and Cover-

'A full explanation of the data requires specification of both T and J in Fig. 8 and Eqs. (2) and (3). It is question-
able whether the explanation that T is additive and J is some nonlinear monotonic function is "simpler" than the
explanation that T is nonadditive and J is linear.

S
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A. Factorial design of location and coverage factor levels
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age capability. This symmetric matrix shown in Fig. 14B contains 144 cells. The diagonal
cells contain identical combinations and therefore would probably be eliminated from the ques-
tionnaire,10 leaving 132 comparisons. Because the upper and lower triangles of this matrix
contain the same combinations, one triangle could be omitted from the questionnaire, if time 0
doesn't permit repetitions, leaving 66 comparisons. However, when triangular designs are used,
it is assumed that the scale values for the row and column stimuli are equal. This may not be
an appealing assumption in situations where there is reason to believe that factors not manipu-
lated in the experimental design, such as order of item presentation, may differentially affect
row and column stimuli. Reasons for avoiding triangular designs are described in Birnbaum 0
(1981).

The marginal means of the large 12 x 12 data matrix shown in Fig. 14B are the subjective
scale values of the Location/Coverage combinations under a subtractive model." Thus, they
are the scale-free values needed to evaluate the Location x Coverage interaction. These values
are referred to as "scale-free" because they do not depend on the form of the J function relat-
ing observed to subjective comparison responses. They depend only on the fit of the subtrac- O
tive function to the data. J in Eq. (11) is assumed to be only monotonic, so any perturbations
found in the comparison data can be scaled away to provide better estimates of the scale-free
values.

A graphic test of the Location x Coverage interaction can be obtained by placing the
scale values (marginal means) 12 in their appropriate cells in the 3 x 4 matrix (Fig. 14A) and
plotting them as shown in Fig. 10. If systematic interactions are observed in the resulting
curves, interactive functions would be entertained as the explanation of the effects of these two
factors in judgments of targeting ability. The results would argue for interpreting (not scaling
away) future observed interactions between these twQ variables. Parallel curves would dictate
entertaining additive functions and scaling away interactions when they are observed between
these two variables. •

The major advantage of using a comparison task in the scale-free design is that a subtrac-
tive function has a good track record in accounting for comparison judgments on a variety of
judgment dimensions (Birnbaum, 1974, 1980; Birnbaum and Veit, 1974a,b; Rose, 1980; Rose
and Birnbaum, 1975; Veit, 1978; Veit, Rose, and Ware, 1982). However, another task or func-
tion could be entertained. As long as the data were monotonically related to the predictions of
the functions, the data could be transformed in accord with the predictions and the scale-free
values obtained from the function. In the scale-free approach, observed responses need be only
monotonically related to psychological responses to get a scale-free test of the embedded combi-
nation process.

The scale-free design calls for embedding factorial designs. Questionnaire length
increases substantially with the addition of more factors. Below we discuss guidelines for
reducing the number of items fielded for study while maintaining sufficient constraints for
testing proposed STFs.

'°Numbers defined in the response scale as "equal" (e.g., in being able to identify important targets) might be put

into these cells for data analysis.
"In a complete factorial matrix, the row marginal means are linearly related to the subjective scale values of the _0

row factor levels and the column marginal means are linearly related with a negative coefficient to the column scale
values under a subtractive function (e.g., Eq. (4)) when instructions are to compare row with column factor level (row
minus column).

12 The row and column marginal mean for a given Location/Coverage combination would be averaged when they are
close to the same value.

. . . . . . . . . . . .. . ." - - - .. . . . . - - ll . . . nnl • I n l - ' - . . . . . I • . . .
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SELECTING EXPERIMENTAL DESIGNS

When factors are being explored for the first time and a decision must be made as to the
appropriate STF (and hence subjective values), it is important to obtain information on
interactions among factors using the scale-free design as well as to vary amount of information
contained in items (Fig. 11), so that it is possible to test among alternative functions. How-
ever, if very many factors are being investigated (e.g, the six factors shown in experimental
unit 1 of Fig. 1) and each has between three and four factor levels, it becomes impossible from
a practical standpoint to field a questionnaire that includes a complete set of items from these
designs. 0

Two techniques in combination make it possible to to field reasonably sized (up to 200
items) questionnaires: (a) gathering judgment data in stages and (b) selecting a subset of a
complete array of experimental designs. The first technique requires that pilot studies be con-
ducted prior to a final STF testing stage. These would provide preliminary information about
the effects of the factors on judgments. The second technique focuses on an experimental
design selection process, the goal being to reduce the questionnaire length while maintaining
the constraints necessary to test adequately among proposed STFs.

Pilot Study Phase

A preliminary investigation of the factors under consideration aids greatly in (a) assessing -
if the judgment tasks are feasible to the respondents, (b) reducing the number of
structure/function hypotheses to be tested in the STF testing phase, and (c) providing a more
solid base for conclusions concerning appropriate STFs through repeatability of results. In the
pilot study phase, emphasis might be on main effects of factors, distances between factor lev-
els, scale-free interactions among the factors, and testing predictions of the STFs under inves-
tigation. In this phase, different questionnaires, each addressing a different question about the 3
factors under consideration, could be fielded to two or three respondents within an expert
group. The amount of information obtained in this phase will depend on time, resources, and
availability of respondents. Often, adequate determination of experimental questions requires
fielding more than one questionnaire for an experimental unit, perhaps because questions gen-
erated by results from a first fielding need to be answered, results are not clear, or more infor-
mation is desired about the relationships among the factors.

The following experimental design descriptions offer some guidelines for a first round of
questionnaires. All factors and factor levels should be included in some aspect of the experi-
mental design, possibly by including all two-way factorial designs or a mixture of two- and
three-way designs, depending on the size of the questionnaire that is generated. Four-and
five-way designs might be included to get an idea of higher-order interactions. For these larger p
designs, the number of factor levels could be reduced to two. (When reducing the number of
factor levels for a given design, it is a good idea to include in the selection what is believed to
be the highest and lowest valued level of each factor so as to span the full range of the factor
dimension.) Scale-free designs could be included for some factor pairs. Exactly how much is
fielded in a first round depends on how many respondents would be available.

Results from a first round of questionnaires may suggest several changes in the factors
that require more data collection. First, preliminary results may indicate that a factor should
be redefined. Indications may result from verbal reports of confusion about the factor's defini-
tion, no effect of the factor on judgments, or individual differences in the effects of the factor
on judgments (for example, the ordering of the factor levels or the direction of a factor's
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interaction with other factors might be different for different respondents). 13 Second, prelim-
inary results may reveal very small differences among some of the factor levels. If new levels
were hypothesized, these should be tested. Third, factors that displayed interactions would be
refielded in scale-free designs, if this had not been done in the first round. Some of these
could be embedded in three-way designs, again guided by the size of the questionnaire gen-
erated by the design and the number of respondents available.

Results from the pilot study guide the shape of the experimental designs used in the STF
testing phase in the following way: If a factor had no effect on judgments, it would be dropped
from further study.14 Factor levels close in value would be replaced with only one level. Scale-
free tests would provide information about whether factors combined interactively or non-
interactively and thus reduce the number of STFs that need to be taken into account in the
final design.

STF Testing Phase

In this phase, it is necessary to use experimental designs that allow adequate tests of the
STFs under consideration in each experimental unit. This design will lead to the final conclu-
sions about the appropriate STFs. As illustrated earlier, a major experimental design feature
would vary the amount of information contained in an item (see Fig. 11). When more than
three factors are included in a unit (assuming between three and five levels of each factor), a -

complete design of all possible numbers of factors (all singles, pairs, triplets, etc.) would yield
an impractically long questionnaire. Thus, it is necessary to select a subset of factorial designs
from a complete array of designs (all possible one-way, two-way, three-way, four-way, etc.,
depending on the number of factors defining the experimental unit) that allow sufficiently
stringent tests of the STFs under consideration. Selection of factorial design subsets should be
based primarily on what is known about the unique predictions of the most viable STFs, which
themselves would be based on information obtained in the pilot study. The following provide
some guidelines for selecting or excluding design subsets.

1. Reduce the number of factor levels in the larger designs (e.g., three-way or larger) for
those factor combinations that received more stringent tests (all levels were used) in the pilot
study. Levels at the top and bottom of the factor level ranges should be retained.

2. When four or more factors are included in the experimental unit, use the strategy of J..
confounding factors (not fully crossing each factor with every other factor) to generate items
that include a factor level of each factor; make sure factors that are confounded in larger
designs are unconfounded (fully crossed) in smaller (two- or three-way) designs. Decisions
about what factors to confound would be based on pilot data. For example, factor pairs inves- "
tigated more thoroughly in the pilot phase might be selected to confound in the larger designs
in the STF testing phase. Also, factors that are correlated in the real world might be selected
for confounding in the experimental design. Examples of confounded designs are presented for
five factors in Birnbaum and Stegner (1978), and for the six and seven factors of experimental
units 1 and 2, respectively, shown in Fig. 1 (Veit, Callero, and Rose, 1982).

13A factor definition that produced individual differences among respondents would not be considered appealing
because it would require the complicated conclusion of more than one STF at that path of the structure, or more than
one set of parameters for a given STF at that path. If the choice were between a factor definition that produced agree-
ment and one that did not, the one that produced agreement would be selected.

14If the capability defined by the factor was important because, for example, decisions were pending about develop-
ing the equipment that increased that capability, it could be retained in the structure but given either a zero weight or
zero scale values in the STF. 9
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As an alternative to confounding factors, each factor can be reduced to two levels (e.g.,
the top and bottom of the range) and combined in a 2' design where n represents the number
of factors defining the experimental unit. If feasible in terms of questionnaire length, this
design provides a lot more information than confounding factors about the relationships among 0
the factors.

3. Include enough subsets of one-way, two-way, etc. factorial designs to provide adequate
tests of proposed STFs (e.g., those shown in Figs. 12 and 13). The adequacy of the tests are
guided by what is known about the unique predictions of the STFs under consideration. The
researcher should include factorial design subsets that provide a mathematically unique solu-
tion of the parameters of the STFs under investigation. That is, the subset of designs must
produce a set of linear equations and unknowns for each STF under consideration from which
to obtain a unique solution for the unknowns (one of the parameters can be fixed to some
value without loss of information). 15 Other design subsets are necessary to provide a test
among predictions of the STFs being hypothesized. Graphs of predicted results (such as those
shown in Figs. 12 and 13) could serve as the selection guide. Of course, additional designs that
make a viable function "work harder" are desired, because the more data an STF can account
for, the more credible it becomes. Again, additions should be guided by what is known about
the unique predictions of the STFs under consideration and the questionnaire length.

COLLECTING JUDGMENT DATA p

Data collection can be broken down into selecting respondents and administering the
questionnaire. The availability and professional characteristics of the respondent population
need to be considered in formulating the structural hypotheses. The respondent population
associated with each experimental unit should have credibility to those requesting the system
evaluation.

Questionnaire administration consists of familiarizing the respondents with the task and
having respondents fill out the questionnaire. Task familiarization or review is important for
"setting the stage." The respondents should feel at home with the situations they will consider
and completely understand the judgment task required of them. Before the questionnaires are
administered, respondents are briefed on and discuss any necessary background information .

(e.g., the details of the battle for a command and control problem domain), the factor defini-
tions, factor levels, and judgment task. The length of this preparatory session will depend on
previous participation of the respondent group in structure development or pilot studies. After
this session is completed, respondents complete from 10 to 20 items consisting of representa-
tive items to familiarize them with the task. Then they fill out the questionnaire.

'rThis may not be possible for some functions-for example, the multiple re&. Aion additive function.
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IV. DETERMINING STFs AND FINAL STRUCTURE

After each data collection session, analyses are performed that provide tests among com-
peting STF/structural hypotheses. The structural hypotheses revolve around the appropriate-
ness of hypothesized intermediary factors (e.g., Fig. 3).

DATA ANALYSES

Determining Individual Differences

The first step in data analysis is to look at the data for each respondent separately to get
an idea of their similarities and differences in the effects of the factors on judgments. Data
within an experimental unit are combined when there are no differences in the ordering of
their factor levels and the pattern of interactions (e.g., divergence, convergence) observed.
When either the factor level ordering or the pattern of their data differs, the two sets of
respondents would not be combined for analyses. One goal in the pilot study phase is to find
factor definitions and task descriptions that affect the experts in similar ways, because it is
simpler to have one STF at each path in the structure. If it is not possible to resolve these I
differences, research should be conducted to determine the bases (e.g., military rank, training
background) of the observed differences and incorporate those differences as part of STF " "
theory.1

Testing Among STFs

The explanatory power of a proposed STF lies in its ability to reproduce the systematic

details of the data. In each experimental unit, we follow two major steps for testing among the
abilities of the proposed STFs to do this. First, we rely primarily on graphic analyses to reduce
the number of structure/function hypotheses to a select few. Second, we use additional graphic -
tests combined with the least-squares data-function discrepancy criterion to test among the
remaining hypotheses. These steps are illustrated below. For purposes of discussion, assume
that the scale-free tests fielded in the pilot stage have provided the basis for assuming J in Eq.
(3) linear.

Graphic Tests Reduce the Number of Possible Hypotheses. Figures 12 and 13 have
demonstrated how graphic tests provide a powerful diagnostic tool for distinguishing among
algebraic functions. This drastically reduces the number of viable hypotheses. However, a few
hypotheses are often retained as possible explanations of the data, especially in large designs
(more than three factors) where many factor combinations that would clinch a particular
hypothesis might not have been fielded because of attempts to reduce questionnaire length.
(The more extensive the pilot study, the fewer ambiguities.) Two examples are presented
below.

For the first example, say our experimental design had six factors (e.g., experimental unit
1 in Fig. 1). Label the factors A, B, C, D, E, and F. If the pattern of the data for factors A, B,

'Functional differences could be in the algebraic form of the STF, magnitudes or order of the factor weights, magni-
tudes of the scale values, any combination of these three areas, or all three areas. _
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C, and D followed that shown in Fig. 15B for the designs fielded, but the convergence was
much smaller, and factors E and F followed the pattern in Fig. 14C, a viable hypothesis would
be a range function with a positive w, weight of the range term for the first four factors and a
multiplicative function for factors E and F. However, a small convergent interaction for fac-
tors A, B, C, and D might also lead to the retention of the relative-weight averaging function
for these factors. The next question is, How might these two groups of factors combine? If a
graph with EF on the x-axis with a separate curve for each ABCD combination looked like Fig.
15C, a multiplicative function would be supported.2 The structure shown in Fig. 16A depicts

A. Range function (-w) B. Range function (+w)

/ R "/

D. Additive model _
C. Multiplicative function

. . .0
R R/

Fig. 15-Hypothetical data predicted by different algebraic functions

(dashed curves represent the data for the factors plotted
on the x-axis when presented alone)

2If the ABCD x EF factorial design was not fielded (or another design that contained this information-e.g., the
ABCDEF design), it would be necessary to assess the relationships between the factors in these two groups using the
designs at hand (e.g., the AE, BCF, DEF designs), which usually leads to the retention of more hypotheses.

S O _
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the combination functions for the two factor sets, as well as the multiplicative combination
function for combing the two sets; two STFs have been retained for the ABCD factor set.

Another example has five factors (A, B, C, D, and E) in the experimental unit. Graphic
diagnostics revealed a divergent interaction (15A) for factors C, D, and E. However, again sup-
pose the interaction appeared small. For such data, one might want to retain both a relative-
weight averaging function and a range function with a negative w. Suppose that graphic diag-
noses also revealed a multiplicative relationship (Fig. 15C) between A and B and additivity
(Fig. 15D) for the two factor sets (a graph of the AB x CDE data-AB on the x-axis with a
separate curve for each CDE combination-looked like Fig. 15D). This might lead to the fac-
tor grouping shown in Fig. 16B, with two possible functions for the CDE factor set. However, S
all interactions in these data were divergent, so it would be desirable also to investigate a five-
factor range model with a negative w. This alternative is shown in Fig. 16C.

These examples demonstrate how preliminary diagnostics can reduce the number of
structure/function combinations that should be retained as explanations of the data. The more
that is learned about the relationships among the factors in the pilot study, the more alterna-
tives can be ruled out.

Testing Among Selected Structure/Function Hypotheses. Tests among remaining
structure/function combinations for each experimental unit are made using STEPIT, a
parameter-estimation program (Chandler, 1969) that selects parameters that minimize the sum
of squares discrepancies between the data and the STF's predictions. One can write each
hypothesis under consideration into the program by embedding STFs associated with inter- .0
mediary factors into the function at the outcome (suboutcome) path for the experimental unit.
For example, one structure/function test for the five factors shown in Fig. 16B would be to
embed a multiplicative function for the AB factors and a range function for the CDE factors in
an overall additive function.3 Another structure/function test would be a five-factor range func-
tion (Fig. 16C). The program provides a statistic of the sum of squares data/function
discrepancy along with the parameter estimates of the function. The STF with the smallest
discrepancy would be considered the "best-fit" STF for that experimental unit.

As mentioned earlier, if deviations are large and systematic for the statistically "best"
function, that function would also be rejected as the appropriate STF. Graphs that plot both
predicted values (r in Eq. (2)) and obtained values (R in Eq. (3)) on the y-axis for the different
factorial designs used in the experimental unit provide a means for assessing the magnitude, __..

direction, and systematic nature of data/function deviations. Such graphs aid in decisions to
reject functions and in determining a "correct" function. If a new function suggested by the
pattern of deviations cannot be adequately tested on the available data (the designs used are
not sufficient for testing the newly proposed functions' unique predictions), it would be neces-
sary to redesign the experiment and collect new data.

3This embedded function can be formulated as follows:

rAB - SA, B. •

W 080 + WCSC + WDSD, + WESE.
rCED -" + W(Smax - min) _0

•  
-

W O + W C + WD + WE

rABCD E - rAB + rcnD
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Figure 17 is an example of a graph that has plotted both predicted and obtained values on
the ordinate. The factors in Fig. 17 came from the top experimental unit shown in Fig. 7.
Respondents judged the "chance of winning the Land Battle," given the number of enemy
Fixed Targets, Moving Force Elements, and Stationary Force Elements neutralized by friendly
forces. Circles in each panel represent the mean judgments of "chance of winning the Land B
Battle" and the curves represent the predictions from the range function shown in Table 2B.
The data/function deviations are very small. Most of the circles are falling right on the
predicted curves. For these data, a range function is accounting quite well for the small but
systematic convergent interactions found in these data.

EXAMPLE OF A FINAL SYSTEM STRUCTURE

The fit of the STFs to the data suggests the structure of the system within each experi-
mental unit. Once an STF has been determined, subjective values associated with the system
factors are also known. 0

The structure shown in Fig. 18 is the final structure that resulted from the hypotheses
(two of which are depicted in Figs. 1 and 3) entertained by Veit, Callero, and Rose (1982). The
difference between Fig. 18 and the hypothesized structure shown in Fig. 3 is that the inter-
mediary factor "Execution Status" has been omitted.

The function selected as the appropriate STF is named at each path. At the top, a range
function with a negative w term best accounted for the immediate targeting experts' data. The P
negative w indicates that divergent interactions were found among the six factors in this exper-
imental unit. The interpretation of this finding is that the better the capability on one factor,
the more of a difference it makes how good their capabilities are on the other factors. A range
model with a positive w term best accounted for the targeteers' data at the target identification
path. The convergent interaction found here indicates that the more the targeteers knew
about enemy emitters, the less of a difference it made how much information they had on
enemy vehicles (and vice versa). (Better capabilities, however, always received a higher judg-
ment.) The two hypothesized intermediary factors, Vehicles and Emitters, shown in Fig. 3,
were retained. At the vehicle path, the range function with a negative w term best accounted
for overall divergent interactions found among the three factors at this experimental unit. The
relative weight function with an initial impression (the third function shown in Table 2A) best .
accounted for the emitter data; the overriding trend in these data was independence among the
factors on the target identification judgments. We will use this final system structure to illus-
trate the comparison of different systems defined by the same structure.

0 " •°

.0

0i



39

C4-

cz4)

0>

w)

paxR

a)



40

ElExperimental unit 1: Immediate targeting experts
*Experimental unit 2: Target identification experts (targeteers)

Immediate Targeting

Range(0

. .. .... .. i 10 M I I

Target

Fig. 8-Finl stuctur andST~s orresondigitotig.n
IdetnaliroiancRoei182

Alert irborn

Range+ Foces orce

Vehicle

Relativ

weight



V. EVALUATING SYSTEMS

ID

Once the system's structure and STFs have been determined, it is possible to evaluate
systems that differ in their capability levels. Capabilities are defined in terms of the system's
primitive factor levels; systems can be considered different when they differ in at least one of
these levels. The primitive factors in the structure shown in Fig. 18 are the
location/classification, coverage, and currency factors associated with Vehicles; the location,
coverage, and currency factors associated with Enemy Emitters; Processing; Facility Operabil-
ity; Alert Forces; Airborne Forces; Weather; and Dissemination.

Determining the outcomes and suboutcomes of a system requires computing the STFs at
the primitive factor paths, transferring these computed outputs into the STFs to which they
are linked, and so forth until all STFs have been computed and all suboutcomes and the final
outcome(s) have been obtained.

Subjective input values to the STFs at the primitive factor paths are needed to begin this
process. Recall that when the program STEPIT tests the STF, it prints out all of the parame-

ter values (e.g., factor weights, stimulus scale values, and the value for w would be printed out
for the range function). However, a scale value would not be available for a primitive factor
level (stimulus) that was not manipulated in the experiment. This is not a problem when
primitive factors are defined along a physical continuum (e.g., time, percent, distance), because

it is possible to obtain the functional form of H in Eq. (2) by plotting subjective values associ-
ated with the manipulated factor levels as a function of the physical values. Thus, factor levels
within the range manipulated can be obtained from the curve connecting those points. How-
ever, when factors are written descriptions, this plot results in a set of points that cannot be
connected. If a system is defined by a different description, it is necessary to refield that
experimental unit to obtain a scale value for the new primitive factor level.

Figure 19 exemplifies this evaluation process (see Table 1 for unabbreviated factor levels).
Suppose it was of interest to compare the systems shown in Figs. 19A-C on how well the
immediate targeting people thought they could do their job (the percent force application
opportunities they thought they could exploit). The different systems are defined by the cir- .

cled primitive factor levels.
First, it is necessary to obtain the subjective values associated with these factor levels.

Figure 20 presents psychophysical functions for the vehicle coverage and currency factors and
subjective points for the location/classification factor. The projected subjective values are the
ones needed for the range function (shown at the top of Fig. 20) to compute the vehicle inter-
mediary factor. Scale values for primitive factor levels at other paths would be obtained in the
same way. This begins the computation procedure that continues to the top of the structure.

For the system shown in Fig. 19A, the STFs predict that the targeteers (lower portion of ..

the structure) would perceive that they could identify about 33 percent of the important tar-
gets. Using this as the target identification factor level in the upper portion of the structure,
immediate targeting experts perceive they could exploit about 48 percent of the important L

immediate targeting opportunities. Figure 19B shows that by increasing the targeteers' ability
to identify targets to 68 percent, the ability to do immediate targeting increases to 52 percent,

41



42 j

Immediate Targeting

48% Range (-) p

Target Identification Facility Dissemination
OperabilityDismnto

% important % supported % units can timely task
force elements 90% 9%

identified 90% 90%
90%
60% 30% 30%
30% - 33% 10% 10%
10%

Forces Forces Weather

Status Status Currency
access access 15 min
90% 90% 1 hr

(60%
10% 10% 12 hrs

Identif ication"- "

33% of important S/E force elements identified in a timely mannerIT Range (+)...-

Computer interpretation IT5  Relative weight
Computer graphic display-

Range (Human interpretation
T4 Computer text display :

Human interpretation

uman interpretation,/

1Lc a i o~ l ss f i a t~n ,  Cov erage Currency Location Icoveragel Currency I-.

All wx loc & class % observed Available for C2  Accuracy % observed Available for C 2

All wx loc 90% processing in 10 m 90% processing in
CIr wx loc & class .0%mm40% 5 min 5 m

30% 15 min 1000 m 30% 15 min

10% 10% 30 min

1 hour

Fig. 19A-System comparisons

, S



435

Immediate Targetingi

52% Range (-)III
Target Identification Facility .minati7

Operability

% important % supported % units can timely task
force elements

identified 90% 90%

90% --68% 30% 30%

30% 10% 10%
10% I I

a Alert I Airbome 1  eateF _ Foce W
Status Status Currency
access access 15 min
0% 90% 1 hr

(60%
30% O
10% 10% 12 hrs

Identification

68% of important S/E force elements identified in a timely mannerIT3 Range ()I

SVehicles Processing E Eitters . '"

Computer interpretation T5  Relative weight
/Computr graphic display i ....

Range - Human interpretation
T4 Computer text display

Human interpretation

Human text sort
Human interpretationI S

hCoeraoC"renc,' Location ICovera ICurrency

911 wx I il) % observed Available for C2  Accuracy % observed Available for C 2

All wx IOc & class processing in 10 m (R processing inClr wx Ioc&cm % 100 m-50 m 60% (EM--
L Clr wx loc CEDf (~

30% 15 min 1000 m 30% 15 min
10% 30 min 10% 30 min

1 hour 1 hour

Fig. 19B-System comparisons

L S

, • 1



-44

Immediate Targeting

59% Range (-)

Facility
Target Identification Operability Dissemination

% important % supported % units can timely task
force elements "

identified 90% COD

90% G) 60%

60% 30% 30%
30%10% 10%

10%

Alert Airboeeahe
Forces I Forces Wea

Status Status Currency
access access 15 min

) GE) l hr
60% 60% ( D
30% 30%
10% 10% 12 hrs

iarget

i fication
I

33% of important S/E force elements identified in a timely mannerIT3 Range (+) J

Computer interpretation T5  Relative weight

Computer graphic display
Range (Human interpretation

T4 Computer text display
Human interpretation

rHuman text sort
Human interpretation

i'lasiictinLCai~ J Coverage JcurrencyJ J Location] Coverage Currency I  .:-;""

All wx loc & class % observed Available for C 2  Accuracy % observed Available for C 2

AlI wx loc 90% processing in 10 m 90% processing inClr wx loc & class 05mi5mn

Clr0% ,5m l) 4) 5m ran GE
30% 15 min 1000 m 30% 15 min
10% S 10% 30 min

1 hour ("

Fig. 19C-System comparisons



45

Lo

ID 
0

00

Ic 0

x 
0

w

>

.2U
Co an
r~ Co

0*

.2.

+ +00

+
c-

N 3j C)0 f O

anB lo gion



46

keeping the other immediate targeting capabilities at the levels shown in in Fig. 19.1 In Fig.
19C, the system's capabilities are at their earlier levels (Fig. 19A), but the immediate targeting
capabilities have been greatly improved in several areas (Alert Forces, Airborne Forces, and
Dissemination),2 increasing the ability to exploit immediate targeting opportunities to 59 per- p
cent.

The actual primitive factor levels selected in the evaluation would be determined from
such things as systems that were being entertained for purchase, production, development, or
present capability levels.

One can assess tradeoffs in the contribution of two factors to an outcome by examining a
graph of STF predictions. Figure 21 shows this for the facility operability and dissemination
factors depicted in Figs. 19A-C. For example, the subjective judgment on the y-axis is about
the same for a dissemination level of 10 percent and a facility operability level of 90 percent as
for a dissemination level of 60 percent and a facility operability level of 30 percent. One can
assess other tradeoffs between these factors by drawing horizontal lines through the theoretical
curves. For graphic tradeoffs among three factors, a graph for two factors such as that shown
in Fig. 21 would be plotted at each level of the third factor. Four factors could be plotted by

9

8 p

7 Facility Operability

90

000

4 0 30% 6090

Dissemination" '
Fig. 21-Theoretical predictions" ,

S

1A inerreaion of these results is that the respondents felt they will be working in a target-rich environment..- .

(comped with available attack aircraft) and thus they put little value on identifying more important targets. . -
2 Thess increm~d capabilities could result from the addition of better airborne capabilities. ' ''
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graphing every factor level combination of two of the factors on the x-axis with a separate
curve for the third factor, and a separate plot for each level of the fourth factor. Graphic pro-
cedures for evaluating tradeoffs would be especially useful in situations where the decision
about which system changes to make involves only a few system factors.

An example of comparing two different systems defined by the larger structure in Fig. 7 is
shown in Figs. 22 and 23. The two different systems are defined by the two different sets of
primitive factor levels, delineated by rectangles in Figs. 22 and 23 (factor levels for the other
primitive components have been held constant). The factors are the same for both the Plan
and Control suboutcomes as follows:

Precision: how accurate the information is that is reported to the command and con-
trol (C2) system;

Enemy Information Display: the means by which enemy information is displayed to
the decisionmaker;

Amount: the percent of enemy information data reported to the C2 system;

Currency: the frequency with which data are observed and reported to the C2 system;

Tactical Air: the percent of friendly tactical air systems about which information can
be obtained in time for use by the decisionmakers; p
Friendly Information Display: the means by which friendly information is displayed
in the C2 system;

Ground Force: the frequency that information on the status of friendly ground forces

is collected and reported to the C2 system.
p

The factor levels delineated for Plan and Control in Fig. 22 can be considered the base-
line system. When STFs were computed up to the number of enemy targets neutralized in the
three different target categories-Moving, Fixed, and Stationary-the results were the neutrali-
zation of 26 percent, 46 percent, and 31 percent of the important Moving, Fixed, and Sta-
tionary enemy targets. When these factors were changed to their top levels (with the excep-
tion of Enemy Information Display), it improved the capability of neutralizing important
enemy targets very slightly-to 31 percent, 48 percent, and 37 percent for Moving, Fixed, and

i ,Stationary targets. Computing the STFs provides measures for each suboutcome in the struc-
ture so it is possible to see where changes are occurring. This information could be valuable to
people who have to make decisions about what systems to develop or purchase. It provides
them with systematic information about what difference changes make and where they occur in
the system.

-
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VI. COMMENTS ON OTHER SUBJECTIVE APPROACHES TO
ANALYZING SYSTEMS

USING "DIRECT" SCALES AND ASSUMED MODELS

The major advantage of the algebraic modeling approach is that it resolves the testability
problems found in other commonly used approaches to measurement. For example, researchers
using the multiple regression or multi-attribute utility theory function generally assume the
validity of the function as the appropriate combination rule (T in Eq. (2)), as well as the vali-
dity of the weights and scale values used to compute the function. Thus, conclusions are based
on untested premises. Further, the assumptions cannot in principle be tested given their
experimental designs. Weights and scale values are generally obtained using "direct" scaling
techniques (Stevens, 1946, 1957). In the direct approach, respondents assign numbers to
stimulus descriptions according to instructions to obtain scales of "sensation." Many opera-
tional definitions have been proposed for obtaining direct scales (for example, Gardiner and
Edwards (1975) recommend the category rating and magnitude estimation scales to obtain -.

scales for the subjective expected utility model). However, psychologists have severely criti-
cized the notion of operationally defining subjective scale values (Birnbaum, 1982; Birnbaum
and Veit, 1974a; Krantz, 1972; Savage, 1966; Shepard, 1976; Treisman, 1964; Veit, 1978).
Despite the lack of a testable basis for conclusions when models and scales are not obtained
from a tested base, for many reasons (e.g., analyzing systems) people interested in obtaining
subjective measures use and recommend these procedures (see, as examples, Gardiner and .
Edwards (1975); Keely, Andriole, and Daly, 1978; O'Conner, 1977; Martin, Bresnick, and
Buede, 1981; Pirie, Frisvold, and Bresnick, 1981; and the PATTERN technique described in
Waddington, 1977).

SAATY'S APPROACH

Saaty (1977) proposes another approach to obtain subjective measures fraught with mea-
surement problems. The basic problems are that his ratio model is not adequately tested, and
he provides no assessment of his aggregation model.

Saaty proposes that a ratio model underlies category ratings of ratios. This is a testable
proposition using the factorial design of stimulus cues that he describes (given that the respon-
dent and not the experimenter fills in the entire matrix). However, the appropriate test of the
model is not the goodness-of-fit index he recommends. Indexes of fit can be high when devia-
tions are significant and systematic. A way for both the researcher and the reader to assess
the fit of a ratio model is to see graphs of the data. When responses are plotted as a function
of the levels of one factor with a separate curve for each level of the other factor, the resulting
curves should form a bilinear fan; deviations from the bilinear prediction of the model (which
can be obtained from the analysis of variance) should be nonsignificant (Anderson, 1970; Birn-
baum and Veit, 1974a; Veit, 1978). We have graphed the data presented in Saaty (1977) and
have found them to be considerably different in form from the ratio model's predictions just
described. If the model does not account for the data, what meaning can be attributed to the
scale values derived from the model?
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Further, suppose a ratio model did account for overt responses-that is, deviations from
bilinearity were nonsignificant. There is a body of literature (Birnbaum, 1978, 1980; Birnbaum
and Meller, 1978; Veit, 1978, 1980) that suggests respondents take differences when instructed
to take ratios and then take an exponential transformation of the differences. That is, when
respondents are instructed to make ratio judgments, the combination function (T in Eq. (2)) is
a subtractive model and J in Eq. (3) is an exponential transformation. Thus, the stimulus
scale values would have to be obtained from the subtractive model after a logarithmic transfor-
mation were performed on the "ratios." The scale values derived from the subtractive model
would be unique to an interval scale because any linear transformation of the scale values used
in the subtractive model would reproduce the rank order of the data points in a factorial S
matrix.

It is interesting to note that scale values derived from a "correct" ratio model are unique .

only to a power transformation (Krantz and Tversky, 1971). Thus, even if the more stringent
designs were needed to test whether T in Eq. (2) was subtractive or ratio (see for example,
Birnbaum, 1980; Veit, 1978) and the data supported a ratio model, the scale values derived
from the ratio model would be only a power transformation of the "true" values under the p
model; they would not be ratio scales as Saaty suggests. Therefore, it would be inappropriate
to make ratio comparisons of the "weights" (scales obtained from the "ratio" model) within
hierarchical levels (see for example, Alexander and Saaty, 1977).

SUMMARY REMARKS •

Conclusions about what affects system outcomes must be credible. Their credibility rests
on the measurement procedure used to produce them. When the procedure has entertained,
rigidly tested, and rejected alternative hypotheses that would have led to different conclusions,
then the hypothesis that is retained as the appropriate picture of the system is more believable.

The STF approach provides a subjective measurement framework for capturing the
experts' perceptions of how his system functions. These perceptions provide information about
how changes in system inputs affect outcomes. In this approach, scale values associated with
system capabilities are theoretical parameters of a rigorously tested function. If a data array
does not follow the configuration predicted by a hypothesized STF, both the STF and its
parameters are rejected. The set of STFs and the structure that are retained as an explanation
of the system emerge after stringent tests of alternative considerations.
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